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Abstract—In this paper, Hough Transform, Vision Transformer
(ViT), and 3D U-Net are utilized to solve the difficulties of
autonomous marker localization for lumbar Epidural Steroid
Injection (ESI) robots in both Magnetic Resonance Imaging
(MRI) and Computed Tomography (CT) images. In CT images,
the error recognized by 3D U-Net is 0.69 ± 0.28 mm, which is
more accurate than the Hough Transform (> 5.00 mm) and close
to the manual marking error 0.63 ± 0.18 mm. In MRI images,
the error in recognition achieved by the ViT plus 3D U-Net can
reach 1.02 ± 0.47 mm, which is close to the result of 0.93 ± 0.44
mm from the Hough Transform, but slightly higher than the
manual marking error 0.44 ± 0.43. This study has the potential
to enhance clinical treatment efficiency and holds a certain value
for surgical robot localization and registration in medical images.

Index Terms—MRI, CT, ViT, 3D U-Net, Hough Transform,
Segmentation

I. INTRODUCTION

Low back pain poses a considerable therapeutic challenge,
standing as one of the foremost five prevalent motives com-
pelling medical consultations in the United States [1]. Tra-
ditional lumbar injections use X-ray imaging procedures for
guidance, such as Fluoroscopy and CT, which however expose
both patients and physicians to ionizing radiation [2]. Magnetic
Resonance Imaging (MRI), on the other hand, is the ideal
imaging modality for lumbar injections [3], and it provides
high-resolution soft tissue contrast and anatomical details
without exposing patients or clinicians to radiation, which is
particularly crucial for the lumbar region and the reproductive
organs of pediatric patients [4]. Nonetheless, in comparison
to CT-guided lumbar injections, MRI imaging acquisition is
more time-consuming and it incurs a higher cost.

Therefore, both X-ray and MRI-compatible robots have
been developed with a specific focus on operating within the
X-ray and MRI environments [5], [6], [7], [8]. However, most
of the robot registration procedures rely on manual marking

by surgeons or operators. For example, Monfaredi et al. [7]
proposed a shoulder-mounted robot for MRI-guided needle
placement, wherein the reference point of their robot had
to be manually selected and marked on the MRI images.
Similarly, the patient-mounted robotic platform proposed by
Maurin et al. also required to mark the reference point on
the graphic interface [8]. To simplify the clinical workflow,
the previous work [9], [10] developed a body-mounted robot
to perform lumbar ESI surgeries. However, they still need to
mark the cylindrical fiducial markers of the robot in MRI
images manually.

Some studies tried to develop autonomous marking meth-
ods. Krigger et al. [11] proposed both active and passive
methods for the registration of cylindrical fiducial markers
in MRI scans. Tokuda et al. [12], [13] introduced a Z-
shaped frame marker technique, which eliminates the need to
manually identify cylindrical markers. However, these methods
require complex preparation and special materials, and cannot
be easily applied to ESI robots.

In this paper, we proposed different algorithms capable of
automatically recognizing the fiducial markers of lumbar ESI
robots within CT and MRI images, with the aim of reducing
potential errors associated with manual marking and enhancing
surgical efficiency. The algorithms encompassed: 1) the use
of Hough Transform for identifying and localizing metal balls
and fiducial markers in CT and MRI images; 2) a 3D U-Net to
segment metal balls within CT images; 3) hybrid ViT and 3D
U-Net to segment fiducial markers within MRI images. To the
best of our knowledge, our work represents the first attempt to
achieve fully autonomous marker localization for the lumbar
epidural steroid injection robot. The adaptability of different
approaches in medical scenarios is discussed.



Fig. 1. Robot structure and its corresponding CT image is shown in 3D
Slicer. (a) CT and MRI-compatible robot for low back pain surgery. The
marker section, located at the bottom of the robot, consists of a circular
disc surrounded by four cylindrical fiducial markers. Each cylindrical fiducial
marker encompasses three metal balls internally, serving the purpose of
facilitating the registration of the robot’s coordinates within the image. (b)
The 3D CT image of the robot with circular disc. The marker section is
identified in red. (c) The CT image processed using 3D Slicer. The extracted
2D CT slices from three distinct angles: coronal, sagittal, and axial. One
cylindrical fiducial marker group of metal balls is shown as an example.

II. METHOD

A. Image Acquisition and Pre-processing

The robot’s structure is depicted in Figure 1, featuring
four cylindrical fiducial markers embedded within the fiducial
frame. Three of the cylindrical fiducial markers are placed
horizontally and the last one is set to be vertical to help spatial
registration. Each of these cylindrical fiducial markers contains
three uniformly distributed metal balls. Their central positions,
namely the coordinates of the middle balls from each group,
served as reference points during the registration procedures.
The ground truth for identifying and segmenting metal balls
and cylindrical fiducial markers in both CT and MRI images
is manually annotated. Based on our experience, the average
time of marking the fiducial markers for one registration is
longer than 20 minutes, which is similar to the laser facial
registration time (16.7 ± 2.3 min) reported by Machetanz et
al [14].

B. 2D Hough Transform

The Hough Transform, especially the circular variant pro-
posed by Pedersen [15], is used to detect circles by converting

Fig. 2. We utilize the 3D U-Net architecture with a contracting and expansive
path for marker localization from CT input. Skip connections between
layers capture both local and global contexts, improving object segmentation
accuracy.

the image space of circles into parameter space. In three-
dimensional space, the CT image projection of a metal ball
forms a circular shape, irrespective of the scanning direction.
Cross-sectional views of a fiducial marker, as captured in MRI
image slices, appear initially as a point, evolve into a full
circle, and subsequently revert to a point. By assessing each
boundary point, potential circle centers receive votes, and the
center with the most votes is selected. The Hough transform
localizes the center of the detected circles, denoted as (xi,yi)
for slice i, and is calculated as follows:

(x, y, z) = (

∑n
i=1 xi

Nx
,

∑n
i=1 yi
Ny

,
z1 + z2

2
) (1)

, where x, y, and z represent the center position, Nx and Ny

represent the total number of the consequent 2D slices that
detected with circles.

C. ViT and 3D U-Net

In this work, the metal balls in CT images are manually
selected by using the 3D Slicer [16], the occupied area ratio
between metal balls and the background is about 1 : 24000
for the original robot CT image and 1 : 1100 for the selected
metal ball section. Hence, we introduce the Focal Tversky Loss
(FTL) to address the data imbalance in image segmentation
[17]. In (2), α, β, and λ are set to be 0.7, 0.3, and 4

3 respec-
tively, as we found that it can best balance the optimization
direction from the True Positive (TP), False Negative (FN),
and False Positive (FP) regions from the prediction and the
ground truth. For segmentation, we used U-Net, a popular
segmentation model in medical image segmentation [18]. As
shown in Figure 2, the U-Net we use consists of an encoder-
decoder structure with skip connections, allowing for effective
feature extraction and preservation of spatial information.

FTL = (1− TP

TP + αFN + βFP
)1/λ (2)

For the MRI scans of the robot, while the cylindrical fiducial
markers make up only 0.5% of the total volume, they represent
less than 20% in each 2D slice. Instead of segmenting the full
3D volume with the 3D U-Net, targeting the volume segments
containing the cylindrical fiducial markers is more efficient.



Fig. 3. ViT Sample Results with MRI imags: 1 means the current slice
contains fiducial marker(s), and the locations are indicated by red rectangles,
while 0 is the opposite.

Therefore, an additional step to identify the volume segments
that contain the cylindrical fiducial markers is applied.

Given the fixed spatial positioning of the cylindrical fiducial
markers within the robot, MRI slices used for segmentation
can be selected based on this known information. Traditional
CNNs cannot effectively learn the spatial information of
images. Hence, we opted for the ViT for the initial slice
selection [19] and classified MRI images into two categories:
with and without cylindrical fiducial markers. ViT adapts the
Transformer model, originally developed for natural language
processing tasks, for image recognition tasks by leveraging
its ability to learn intricate relationships between different
regions of an image, enabling robust feature extraction and
representation. The ViT achieved remarkable performance on
various image classification benchmarks and demonstrated the
potential of using Transformers in computer vision applica-
tions. After classifying MRI images with ViT, the 3D U-Net
is used to segment areas with cylindrical fiducial markers in
the identified images.

III. EXPERIMENT AND RESULT

A. CT and MRI Dataset

To simulate surgical scenarios, CT and MRI images are
collected during real surgical procedures. The CT dataset
includes 28 fully scanned robot scenes captured by the Loop-X
(Brainlab, Munich, Germany) in various positions and postures
with the pixel size 1385×1385×1386. The data is split for
training, validation, and testing at a ratio of 18 : 5 : 5.

The MRI dataset consists of images covering coronal,
sagittal, and axial planes obtained from five different scans,
each conducted at a distinct robotic angle. These images were
acquired using a 1.5T MRI scanner (Aera, Siemens, Germany)

TABLE I
EVALUATION OF MULTIPLE METHODS

Method CT Error / mm Method MRI Error / mm
Hough Transform > 5.00 Hough Transform 0.93± 0.44

3D Unet 0.69± 0.28 ViT + 3D Unet 1.02± 0.47
Manual Marking 0.63± 0.18 Manual Marking 0.44± 0.43

with an original pixel resolution of 288×384, containing nine
slices per MRI image. The dataset has been divided into
training, validation, and testing subsets in a 5 : 3 : 2 ratio.

B. Learning-based Workflow and Experiment

In the case of 3D CT images, each of them is divided
into multiple 3D sub-patches with size 70, and these patches
are inputted into the 3D U-Net architecture to extract metal
ball information from a global perspective. A median filter
is applied to the output model to eliminate potential noise
signals misclassified as the metal ball. For the 3D U-Net, it
is trained by using Google Colab’s A-100 GPU. For MRI
images, the approach involves sending 2D CT slices to a
ViT to identify the fiducial marker section within the global
picture. The ViT is trained by a computer with a GPU RTX
3090Ti and CPU Intel i9-13900K. Subsequently, the slices that
are classified with fiducial markers are reconstructed into a
3D model and processed by the same 3D U-Net for fiducial
marker localization. This approach improves computational
efficiency by reducing the computational load associated with
3D convolutions.

The 3D-Unet is trained for 100 epochs. The Adam optimizer
and the FTL discussed before are utilized with a fixed learning
rate of 0.001. On the other hand, the ViT training is conducted
with images resized to 128×128 pixels, and 16×16 pixel
patches. A total of 100 epochs are employed for training, using
the cross entropy loss function. The training utilizes a StepLR
scheduler with a step size of 1 and a gamma value of 0.7,
alongside a learning rate of 0.0002.

C. Results

The error in manual marking is calculated by repeating
the same marking action 30 times, while the error in other
algorithms is calculated directly against the average value
of manual marking, the ground truth. For CT images by
using the 3D U-Net, the metal ball localization task takes
an average of approximately 11.2 seconds to complete. The
average registration error is 0.69 mm, as shown in Table I.

After 45 epochs of ViT training, the highest accuracy in
classifying whether MRI slices contain cylindrical fiducial
markers reaches 85.2%, with no false negative cases in the
test dataset. On average, this procedure takes 6.1 seconds
to complete and yields an error of approximately 1.02 mm.
Sample results are illustrated in Figure 3.

IV. DISCUSSION AND FUTURE WORK

We proposed and compared different algorithms that en-
able robot marker localization in medical images. They have
different advantages in different scenarios, which can reduce



the human error rate for manual marking and make the
surgical process more efficient. The advantage of the Hough
Transform is its speed or rapid processing. However, even
if the Hough Transform can identify the center coordinates
of the marker with easy implementation, its results tend to
be more error-prone. Additionally, it is difficult to manage
scenarios where the fiducial marker is oriented differently,
as the Hough Transform cannot detect cylindrical fiducial
markers when they are not oriented perpendicular to the MRI
images. Moreover, when the Hough Transform is applied
to the CT image, other components of the robot in the
CT image give tremendous interference for the metal ball
detection, which causes a large error in localization. The
Learning-based method offers increased reliability compared
to traditional computer vision methods. However, a significant
concern lies in its generalizability to other surgery robots and
its application in multiple image types (e.g., ultrasound). While
Hough methods are more accommodating to marker detection
in various tasks, the versatility of ViT heavily relies on the
training set. To enhance our model’s robustness, we plan to
use transfer learning and expand our medical image dataset.
Balancing localization accuracy and context in training the
3D U-Net is challenging: larger patches provide better context
but compromise accuracy. The network sometimes misidenti-
fies robot parts, requiring potential median filter application
or ViT preprocessing. Given the GPU RAM computational
demands, we’ll refine hyperparameters and enhance hardware
to optimize model performance.

V. CONCLUSION

This study introduces both learning-based techniques and
Hough Transform for marker localization in CT and MRI
contexts and specifies the best practices for their use in
different scenarios. The Hough Transform provides quick and
accurate results with less interference in medical images, while
the learning-based methods may perform better in such condi-
tions. For MRIs focusing on speed and simplicity, the Hough
Transform is suitable. However, for most other situations, ViT
and 3D Unet are recommended; they quickly and accurately
auto-annotate markers than manual marking, which are 11.2
seconds for a CT image and 6.1 seconds for a set of MRI
images that contain the whole robot, and much shorter than
manual marking time that is more than 20 minutes.
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